Comparison of purge and no-purge sampling strategies for deep groundwater

Hans Baillieul, Jeroen Verhack, Karen Van Geert, Isabelle Olivier, William Leys and Wouter Gevaerts (ARCADIS Belgium)

Imagine the result

Presentation outline

1. No-purge groundwater sampling:

- 1. What is it?
- 2. Types
- 3. Advantages
- 4. Use

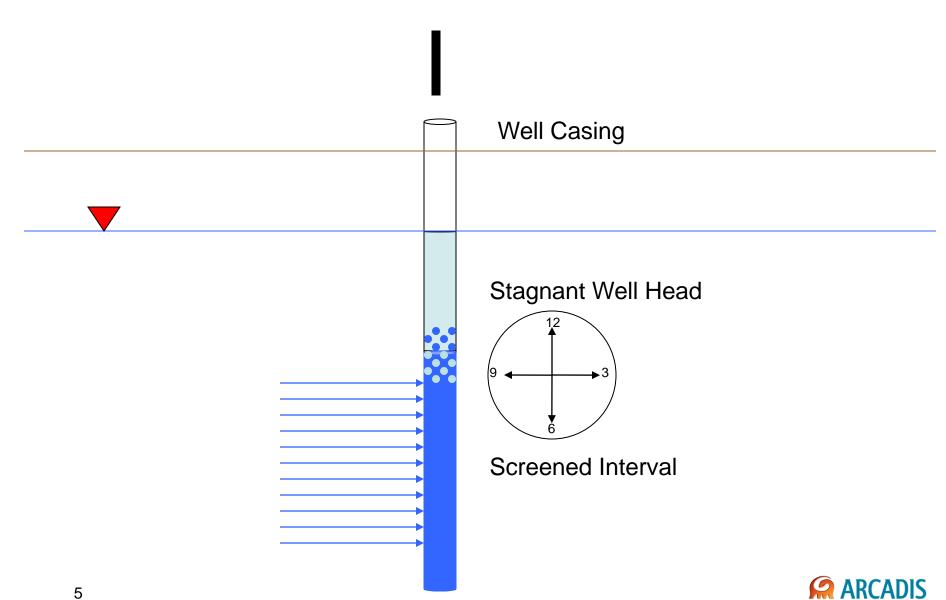
Use for contaminant distribution
 2 case studies

3. Use for long term monitoring1 case study

4. Conclusions

No-purge groundwater sampling

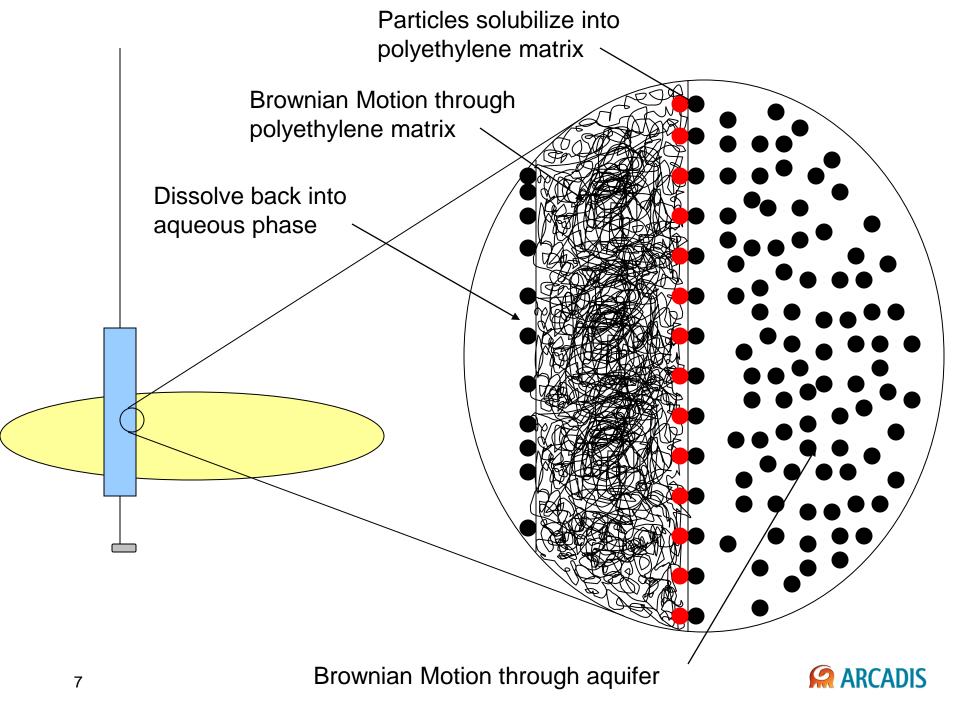
No-purge GW sampling


What is it?

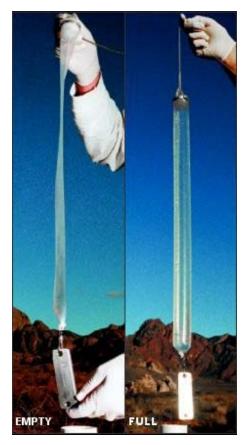
- GW sampling without pumping or purging
- Sampling at a specific depth
- Widely accepted and used in the US for long term monitoring
- 2 types:
 - Passive diffusion bags
 - Hydrasleeve[™]
- More? ITRC, Feb 2007: 'Protocol for use of five passive samplers to sample for a variety of contaminants in groundwater'

Passive sampling

No-purge GW sampling

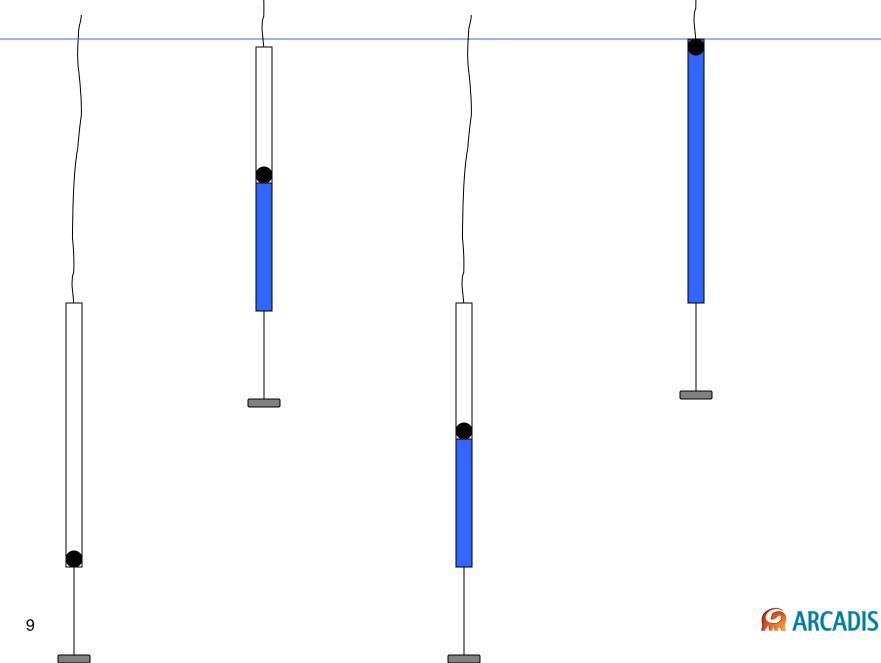

Types

Passive diffusion bags (PDB)


- Equilibration time of 2 weeks
- Only apolar compounds diffuse
- Diffusion through bag with distilled water

No-purge GW sampling

Types

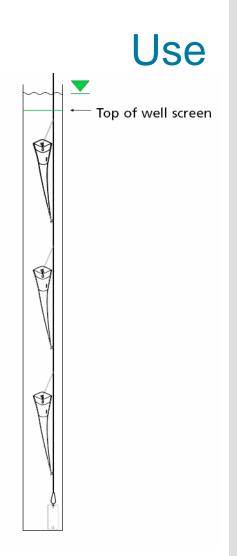


Hydrasleeve[™] (HS)

- No equilibration time needed
- Both polar and apolar compounds
- Grab sample = 'snap shot' in space and time

HydraSleeve[™] Sampler

No-purge GW sampling


Advantages

No purge water

- No decontamination necessary
- Limit time on site
- Cheaper (~ 50%) than purged samples
- Safer (limited exposure to groundwater)

No-purge GW sampling

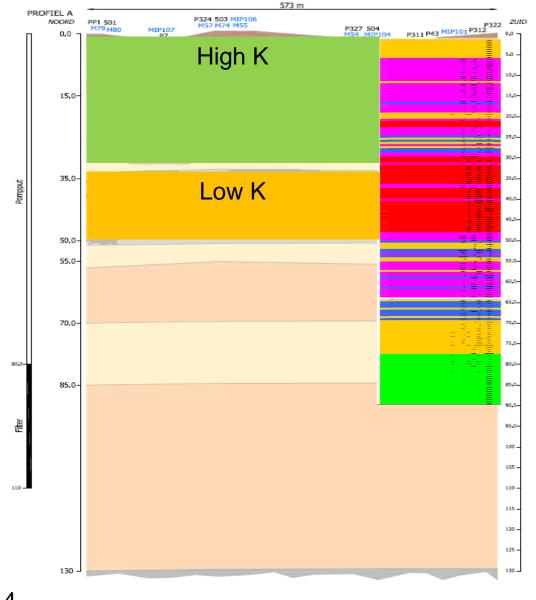
11

1. Contaminant distribution

- Profiling
- Comparison with purged samples
- 2. Long term monitoring

NOT recommended for one time sampling

Use for contaminant distribution

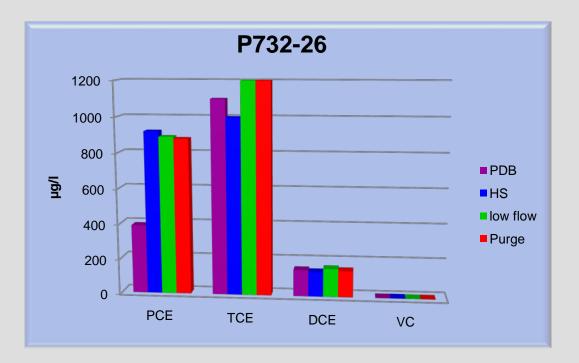

Site 1

Executed tests

- 1. Comparison high volume purge, low flow sampling, PDB and HS
 - 1. High K zones
 - 2. Low K zones
- 2. Vertical profiling

General overview conceptual site model

PID : 0 ppm < 5 ppm < 10 ppm < 100 ppm > 100 ppm

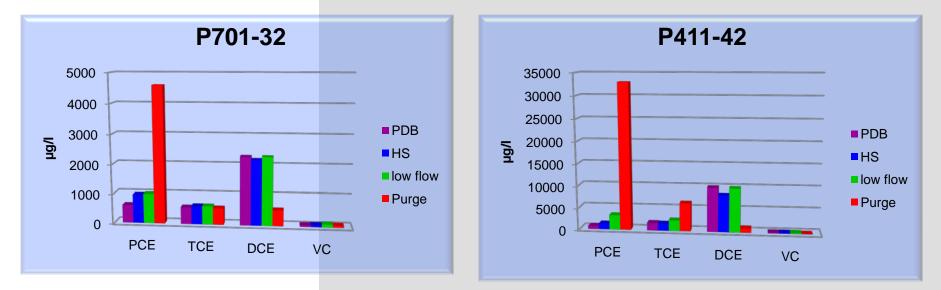

MAKCADIS

¹⁴ **1**4

Site 1

 Comparison high volume purge, low flow sampling, PDB and HS
 High K zones

Good correlation



Site 1

 Comparison high volume purge, low flow sampling, PDB and HS
 Low K zones

Bad correlation with high volume purge

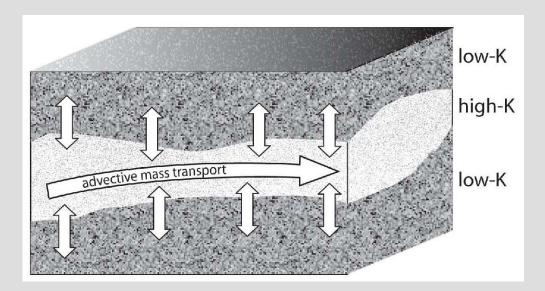
- Higher PCE
- Lower DCE

Site 1

2. Profiling with PDB's

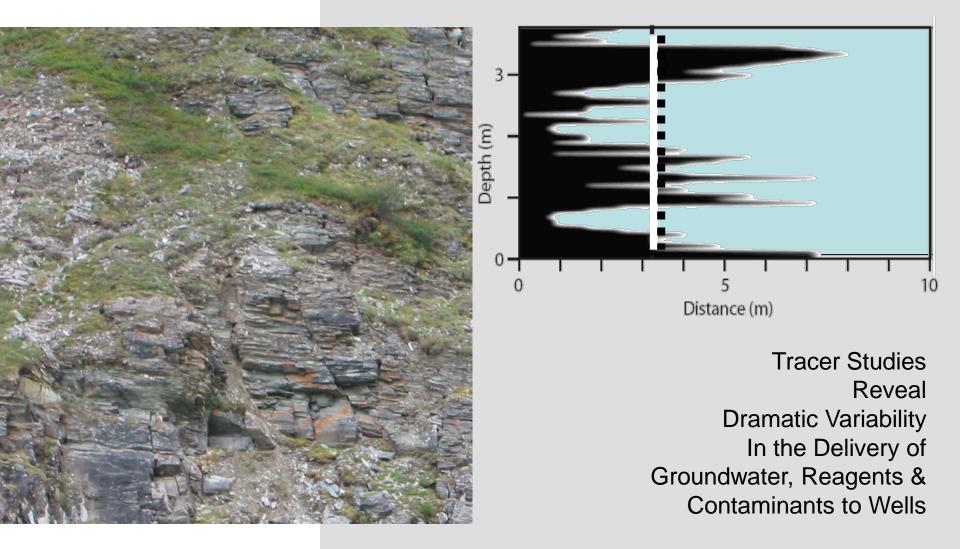
- Well P411-42
- No significant differences across screen
- Does NOT give explanation for differences between high volume purge and passive sampling techniques

1		D	CE	т	CE	cis		V	С
									-
Filter screen	Depth PDB	PDB	conv	PDB	conv	PDB	conv	PDB	conv
m-bgs	m-bgs	μg	I-1	μg	I-1	μg	l-1	μg	I-1
	38 - 38.5	76	_	440		6100		23	
	39 - 39.5	250		58		16000		19	
38 - 42	40.5 - 41	570	54000	200	5800	11000	120	13	57
	40.5 - 41	240		240		14000		23	
	41.5 - 42	190		140		14000		22	



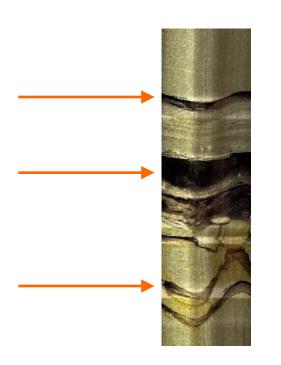
Site 1

Explanation: heterogeneity


Subsurface (and also low K zones) consist of higher and lower K zones

- Advective transport through high-K zones
- Diffusive interaction with low-K zones

Every Monitoring Well <u>Sampling</u> Method Yields Strongly Biased Results


Site 1

High PCE and TCE in pumped samples?

- Sampling of higher K zones around the well under pumping conditions
- During sampling: GW decrease of 7 m causes increase of natural hydraulic gradient by > 100 x
 - Shear forces mobilize residual DNAPL in high K-zones

Site 1

High DCE in passive samples?

- Limited flushing of the well by natural groundwater flow and limited # high K zones
 - passive sampling shows concentrations in lower K zones
- Different geochemistry of high and low Kzones
 - More organic material in lower K-zones
 - More food for CVOC reducing bacteria
 - Higher degradation in lower K zones
 More DCE

Site 1

Conclusions

High K, dissolved concentrations zones:

• Passive sampling ~ purged samples

Low K, DNAPL zones:

- Passive sampling more representative for dissolved fraction
- Purged sampling shows presence of residual DNAPL

Site 2

Executed test:

Comparison high volume purge and PDB

- good correlation in high K-zones
- well W3 in lower K zone: higher TCE conc
- Best correlation in high K-zones

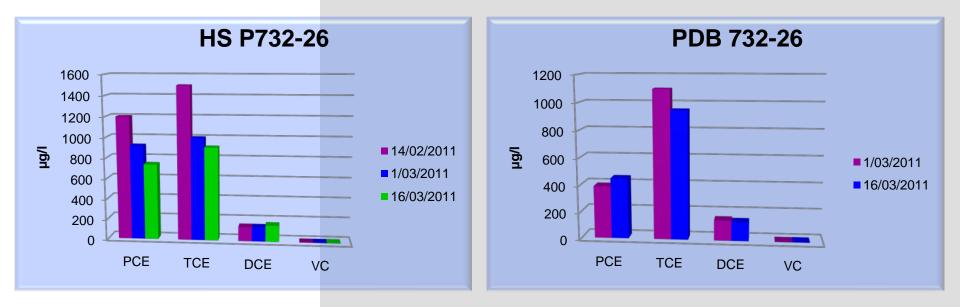
Well	Filter depth	trichloro	ethylene	cis-1,2	cis-1,2-dichloroethylene		vinylchlorine	
		PDB	conv.	PDI	B conv.		PDB	conv.
		µg l⁻¹	μg Γ ¹	µg ľ	¹ μg Γ ¹		µg l⁻¹	µg l⁻¹
W1	20 - 22	<0.29	<0.29	3.8	5 19.7		1.16	3.92
W2	20 - 22	<0.29	<0.29	4.9	8.34		5.31	5.37
W3	4.4 -6.4	299	2040	49	173		5.76	7.33
W4	9.4 - 11.4	16	0.37	27.1	l 28		74.9	61.2
W5	9.8 - 11.8	33.4	55.7	2.5	5 1.18		<0.78	<0.78
W6	15 - 17	58.6	47.2	265	5 201		1.37	1.7
W7	15.5 - 17.5	32.2	47.3	301	384		1.94	1.79
W8	10 - 12	2.34	2.72	152	0 1810		206	208
W9	31 - 33	<0.29	<0.29	7.34	4 6.77		1.83	1.57

Use for long term monitoring

Site 1

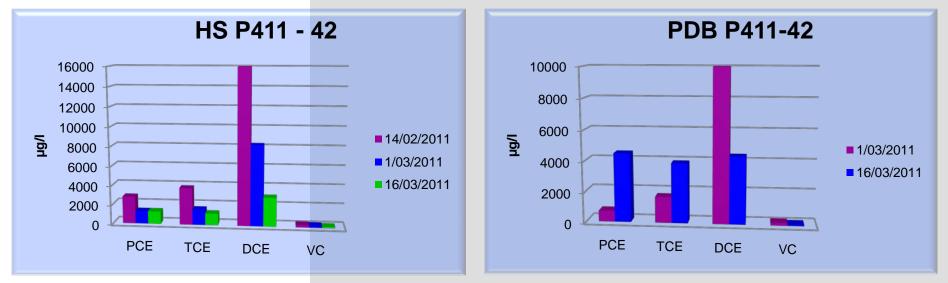
Criterium for long term monitoring:

- Consistency in time
- Similarity to purged samples is NOT a good criterium (see previous testing)

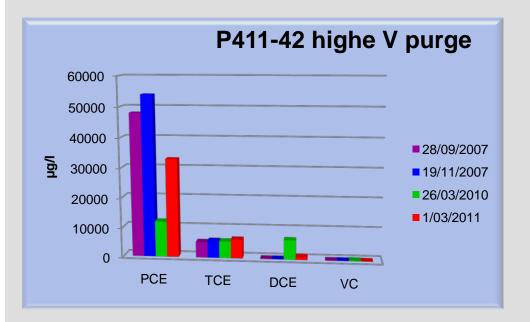

Executed test:

- 1. High K zones
- 2. Low K zones

Site 1


- 1. High K zones
- Results are stable in time

Site 1


- 2. Low K zones
- Results are variable in time
- BUT influence of purging on March 1, 2011 between sampling events!

Site 1

- 2. Low K zones
- Results from purged samples could also vary in time

Site 1

Cost savings Comparison of costs between high volume sampling and HS/PDB

- 1 sampling event
- 46 wells at depths between 6 and 69 m bgs on site 1
- Includes material and rental of equipment
- Does not include cost for treatment of pumped groundwater, lab analysis and reporting

Purge	Passive	Reduction		
6.000€	3.500 €	42%		

Site 1

Conclusions

• High K, dissolved concentrations zones:

Passive sampling is consistent in time

• Low K, DNAPL zones:

- Both passive and active sampling are variable in time
- BUT purging may have influenced results of passive sampling

Conclusions

Conclusions

No-purge GW sampling...

- can be used for long term monitoring
 - Cheaper than purged samples
 - More cost effective for deep wells
 - Be aware of differences with purged samples

- can significantly differ from purged groundwater sampling

- Low K zones
- DNAPL zones
- can give a better insight into the distribution of the contamination
 - Profiling
 - Low and high K zones

"Provocative" Conclusions

In plume zones : no matter which technique you choose

In source zones :

- For Risk assessment : use passive sampling
- For dimensioning the treatment installation : use purge samples
- For defining total mass, use at least purge samples,....but better core drillings

Extra slides

Comparison of boundary conditions

	high volume	PDB	HS
polar compounds	+	-	+
apolar compounds	+	+	+
field parameters	+	-	+
time for >30 m (hrs)	8	1	1
vertical profiling	-	+	-
waste generated	-	+	+
cost	-	+	+
materials needed	-	+	+
sample volume	+	-	-
small dia wells (< 2")	+	-	-

